Product has been added to the basket

Petroleum Geoscience

Petroleum Geology Cover

The international journal of geoenergy and applied earth science

A co-owned journal of the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE)

Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.

Published by both The Geological Society of London and EAGE, Petroleum Geoscience is a peer-reviewed journal providing a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.

Chief editor

Philip Ringrose, Equinor & NTNU, Norway

Online in the Lyell Collection

The journal is included the Lyell Collection and articles appear online soon after they have been accepted for publication and ahead of the printed volume or issue. From May 2018 journal articles will be posted as accepted manuscripts and then replaced by the published article (the version of record). The journal is easily accessible on mobile devices.

Print journal

Petroleum Geoscience is published in print in February, May, August and November.

The journal is abstracted and/or indexed in:

  • Current Contents
  • GeoArchive
  • Geobase
  • Geological Abstracts
  • GeoRef
  • Mineralogical Abstracts
  • Petroleum Abstracts
  • Science Citation Index

Recent Petroleum Geoscience Highlights

Geology and hydrocarbon potential of the East African continental margin: a review

By Ian Davison and Ian Steel

The East African margin has a complex structure due to multiple phases of rifting with different stretching directions. The main phase of rifting leading to Indian Ocean opening lasted from the Late Pliensbachian to the Bajocian (c. 183 – 170 Ma). This occurred during impingement of the Bouvet hotspot which weakened the lithosphere sufficiently to allow continental break-up. Thick salt and marine shales were deposited during the Toarcian in the Majunga, Ambilobe and Mandawa basins and the onshore Ogaden Basin; marking the onset of the Indian Ocean marine incursion, when good quality oil-prone source rocks were deposited at this time. The recent giant gas discoveries in Tanzania and Mozambique are believed to be sourced from overmature Jurassic or, possibly, deeper Permian age Karoo shales. The margin from the Lamu Basin in the north to the Zambesi Delta in the south is covered by thick Tertiary and Cretaceous sediment derived from the East African rift shoulders, and Lower Jurassic source rocks are predicted to be in the gas window along most of the margin. However, the margins in South Africa, south Mozambique, northern Somalia and Madagascar are less deeply buried, and have better oil potential.
The large Tsimimo and Bemolanga tar sand deposits and the recent announcement of an oil rim in the Inhasorro Field indicate that there are good oil-prone source rocks in the Karoo rifts and in the Albian Domo shales; and the search for oil continues with companies exploring in areas where Jurassic source rocks may be less deeply buried, and/or potential Albian–Turonian-aged source rocks are sufficiently buried to generate oil.

Read more

South China Sea crustal thickness and oceanic lithosphere distribution from satellite gravity inversion

By Simon Gozzard, Nick Kusznir, Dieter Franke, Andrew Cullen, Paul Reemst and Gijs Henstra [OPEN ACCESS]

Inversion of satellite-derived free-air gravity-anomaly data has been used to map crustal thickness and continental lithosphere thinning in the South China Sea. Using this, we determine the ocean–continent transition zone structure, the distal extent of continental crust, and the distribution of oceanic lithosphere and continental fragments in the South China Sea. We construct a set of regional crustal cross-sections, with Moho depth from gravity inversion, spanning the South China Sea from offshore China and Vietnam to offshore Malaysia, Brunei and the Philippines to examine variations in ocean–continent transition structure and ocean-basin width. Our analysis shows a highly asymmetrical conjugate margin structure. The Palawan margin shows a narrow transition from continental to oceanic crust. In contrast, the conjugate northern margin of the South China Sea shows a wide region of thinned continental crust and an isolated block of continental crust (the Macclesfield Bank) separated from the Chinese margin by a failed oceanic rift. The Dangerous Grounds are predicted to be underlain by fragmented blocks of thinned continental crust. We use maps of crustal thickness and continental lithosphere thinning from gravity inversion together with free-air gravity- and magnetic-anomaly data to identify structural trends and to show that rifting and the early seafloor-spreading axis had an ENE–WSW trend while the later seafloor-spreading axis had a NE–SW trend.

Read more

Hormuz salt distribution and influence on structural style in NE Saudi Arabia

By S. A. Stewart

This study uses previously unpublished reflection seismic data and wells to map part of the western margin of the Hormuz salt basin for the first time, and to link Hormuz facies distribution to the evolution of major structures in NE Saudi Arabia. Most of these major structures host giant or supergiant oil fields in Mesozoic reservoirs. This study is based on seismic interpretation of structural style because the Hormuz occurs at up to 10 km or more depth present day and is not penetrated by any wells. In the eastern part of the study area, seismically transparent zones with structural elements diagnostic of salt tectonics pass laterally into layered seismic facies with local clinoform geometries. The transparent facies are interpreted as mobile salt, the layered facies as immobile evaporite basin-margin strata. The layered facies display onlap and fault-bound relationships with older basement domains, and in map view the boundary between layered and transparent seismic facies at the Hormuz level forms embayments and promontories on the west margin of the salt basin. Areas of mobile salt underlie domal and periclinal structures, such as Karan, Hasbah, Dammam and Khursaniyah. These structures display steeply dipping reflections at depth that can be interpreted as salt pillow flanks, with base salt locally interpretable, and have plan-view aspect ratios of 2 or less. Beyond the limits of layered seismic facies, between the embayments and westwards towards the Arabian Shield, seismic and well data indicate that the major structures are not salt cored, including Berri, Manifa, Safaniya, Jauf, Juraybi'at and Haba.

Read more

Useful links

Access the journal online through the Lyell Collection

Visit the EAGE website

Celebrating 25 Years of Petroleum Geoscience

Over the last 25 years, Petroleum Geoscience has been publishing leading research papers on exploration and development of sub-surface hydrocarbon resources and related themes in applied geoscience. The journal is a joint enterprise between the Geological Society of London (GSL) and the European Association of Geoscientists and Engineers (EAGE), published by the GSL Publishing House. The first issue was released in February 1995 with founding Editors Andrew Hurst and Tony Spencer at the helm.

On the opening evening of the 81st EAGE Conference and Exhibition, held at ExCel London, past and present editors, authors and contributors came together to celebrate Petroleum Geoscience’s special birthday. The reception was hosted by Philip Ringrose (Chief Editor), with speeches from Andrew Hurst (Founding Editor), Ingrid Magnus (Publication Officer) and Maggie Simmons (Head of GSL Editorial Development). Thank you to all those who attended and joined us in a toast to the last 25 years of Petroleum Geoscience.

Image: PG 25th Anniversary Reception

Image courtesy of EAGE.

What has changed in 25 years?

Looking back over past issues we can see that the topics and themes addressed within Petroleum Geoscience have been recognisable and fairly constant over this period (seismic imaging, stratigraphy, tectonics, basin analysis, reservoir modelling, etc.), but what has changed most are the advances in the techniques applied. Seismic imaging has moved on in leaps and bounds (e.g. waveform analysis and imaging), computer simulations now employ multi-physics analyses to multi-million cell models and the scales of analysis now go from the nanoscale (e.g. pore imaging) well past the basin scale to crustal-scale tectonic analysis.

Hopefully, careful geological observation of rock samples (at outcrop or in core) is still a foundation for any geoscience discipline, but the analytical methods used to take those observations into analysis and interpretation have moved on in leaps and bounds. If you have a moment, take a look at back issues of Petroleum Geoscience to see how this branch of Earth science has moved on over the last 25 years.

Looking to the future

We are pleased to announce that, during its 25th anniversary year, Petroleum Geoscience has decided to introduce a new series of papers on the theme of Energy Geoscience.

The Journal already publishes papers on geoscience aspects of energy storage, CO2 storage and geothermal energy, although our current content is mainly research related to hydrocarbon exploration and production.  Research focused on new and emerging topics, such as cyclic storage of gas or geothermal energy, will represent an increasing fraction of the Journal’s coverage and deserve a more specific home. By introducing the Energy Geoscience Series, we hope to create a channel for the anticipated growth in non-petroleum related aspects of geoenergy and applied earth science.

We continue to invite papers on any aspect of geoenergy and applied earth science, but now authors are able to choose between submission under Energy Geoscience alongside the traditional categories under Petroleum Geoscience or one of the more specific Thematic Set topics we choose to run from time to time.

Despite this important and stimulating interest in new forms of energy, the use of hydrocarbons remains essential to human society, and novel and innovative papers on the geoscience of petroleum (derived from ‘rock oil’ in Greek) will continue to be a vital part of our geoscience portfolio. We look forward to receiving a continuing stream of high-quality research papers across all aspects of applied geoscience.

PG Online

The Lyell Collection

Access Petroleum Geoscience (PG) in the Lyell Collection


  • Impact Factor: 1.606
  • 5yr IF: 1.958
  • SJR: 0.597
  • SNIP: 0.743

Metrics should be viewed in context here: Metrics